New Approach to 3-Oxygenated Carbazoles. Synthesis of Hyellazole and 4-Deoxycarbazomycin \mathbf{B}^{1}

Tomomi Kawasaki,* Yoshinori Nonaka, Miki Akahane, Noriko Maeda and Masanori Sakamoto* Meiji College of Pharmacy, 1-35-23, Nozawa, Setagaya-ku, Tokyo 154, Japan

Abstract

3-Oxygenated carbazoles are prepared in 4 steps from 1-acetyl-2-methoxy-1.2-dihydroindol-3-one 6 by Wittig reaction with phosphonium ylides 10 to afford the 3 -alkylindoles 11 , followed by silylation to the silyl enol ethers 12. Electrocyclic reaction of the enol ethers 12 followed by desilylation give the 3hydroxycarbazoles 15. The carbazoles $15 a, b$ were converted into the carbazole alkaloid hyellazole 1 and 4-deoxycarbazomycin B 2c, respectively.

Carbazoles with an oxygen substituent at the 3 -position constitute the framework of carbazole alkaloids; hyellazole 1 isolated from the blue-green alga Hyella caespitosa, ${ }^{2}$ carbazomycins 2 produced by Streptoverticillium ehimense, ${ }^{3}$ and carazostatin 3, found in Streptomyces chromofuscus. ${ }^{4}$ The antibiotic activity of carbazomycin B $\mathbf{2 b}$ and the antioxidative action of carazostatin 3 have made this class of compounds interesting synthetic targets for several research groups. ${ }^{5-12}$ We have developed a new synthesis of 3-oxygenated carbazoles based on the simple strategy shown in Scheme 1. This approach

involves electrocyclic reaction of 3-butadienylindoles 5 which has, surprisingly, found little use in carbazole syntheses to date. ${ }^{13}$ We now report full details of this work which has resulted in the synthesis of hyellazole $\mathbf{1}, 4$-deoxycarbazomycin B 2c, and the related compound 4.

Results and Discussion

The preparation of 3-butadienylindoles 5 for the electrocyclic reaction is based on our recently described method for synthesis of 3 -alkylindoles by Wittig reaction of readily available $1,2-$ dihydroindol-3-one. ${ }^{14}$ The ylides 10 were prepared by the usual procedure from triphenylphosphine and α-halogeno ketones $\mathbf{9 a},{ }^{15} 9 \mathrm{~b}$ and $9 \mathrm{c} .{ }^{16}$ Attempts to prepare bromide 9b, according to the procedure for the preparation of chloride $9 \mathbf{a}^{15}$ resulted in very poor yield. The halogeno ketone $9 \mathbf{b}$ was, however, obtained by the following method; methylation of tiglic acid 7 with methyllithium followed by bromination of the obtained 3-methylbut-3-en-2-one 8 with 5,5-dibromo-2,2-dimethyl-4,6-dioxo-1,3-dioxane (Scheme 2). ${ }^{17}$

Scheme 2 Reagents and conditions: i, $\mathrm{MeLi},-78^{\circ} \mathrm{C}, \mathrm{Et}_{2} \mathrm{O}$; ii, 5,5-dibromo-2,2-dimethyl-4,6-dioxo-1,3-dioxane, $\mathrm{HBr}, \mathrm{CCl}_{4}$; iii, (1) $\mathrm{Ph}_{3} \mathrm{P}$, (2) $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$ or $\mathrm{NaOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

The Wittig reaction of 1-acetyl-2-methoxy-1,2-dihydroindol3 -one 6 with the ylides 10 in refluxing 1,4-dioxane or toluene gave the corresponding 3-alkylindoles 11 in good yield (Scheme 3). The indoles 11 were treated with trimethylsilyl iodide (TMSI) in the presence of $1,1,1,3,3,3$-hexamethyldisilazane (HMDS) at room temperature to give TMS enol ethers 12 in $80-98 \%$ yield. The structures were established by spectral data, and the stereochemistry of the TMS enol ether moiety was elucidated by NOE experiments. In the case of the enol ether 12a, irradiation of the ene proton $\left(\mathrm{H}^{\mathrm{a}}\right)$ strongly enhanced the signal of the methyl group, confirming the Z configuration of the enol ether moiety, and at the same time an enhancement of the signal due to the proton at the 4 -position $\left(\mathrm{H}^{\mathrm{b}}\right)$ of the indole nucleus was also observed. This indicated that the enol ether 12a exists predominantly in the conformer shown in Fig 1. The stereoselective formation of Z enol ethers 12a,b is consistent with the results of the silylation of the ketones by using TMSIHMDS, which favours production of the thermodynamically controlled products. ${ }^{18}$ However, silylation of the indole 11c gave a mixture of E - and Z-silyl enol ethers 12c (2:1). The difference in their selectivities should be due to the bulk of the substituent (R^{2}) in compounds 12.

Scheme 3 Reagents and conditions: i, ylide 10, 1,4-dioxane or toluene; ii, TMSI, HMDS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp

12a

(Z)-12c

(E)-12c

Fig. $1 \quad \mathrm{TMS}=\mathrm{SiMe}_{3}$

The electrocyclization of the enol ethers 12 was initially attempted by heating compound 12a in boiling xylenes (b.p. $140^{\circ} \mathrm{C}$) and o-dichlorobenzene (b.p. $180^{\circ} \mathrm{C}$). However, only decomposition of the starting material was observed. On heating of compound $\mathbf{1 2 a}$ in a higher boiling solvent such as cisdecalin (b.p. $195^{\circ} \mathrm{C}$), it smoothly isomerized, cyclized, and released methanol from an intermediate 13a to give the desired 3-siloxycarbazole 14a and the desilylated product 15a in 53 and 13% yield respectively (Scheme 4). The removal of the silyl group from compound 14a was carried out by treatment with tetrabutylammonium fluoride (TBAF) to afford the 3-hydroxycarbazole 15a (81%). Similar cyclization of silylenol ethers $\mathbf{1 2 b}, \mathbf{c}$ via intermediates $\mathbf{1 3 b}, \mathbf{c}$, followed by desilylation of the siloxycarbazoles $\mathbf{1 4 b}, \mathrm{c}$, gave the corresponding 3-hydroxycarbazoles $15 b(40 \%)$ and 15 c (60%), respectively. Although, in general, electron-donating groups act as an undesirable factor for a thermal hexatriene cyclization, ${ }^{19}$ the cyclization of compounds 12 which have electron-donating groups went smoothly to completion. This may be due to the ready release of methanol from the intermediate 13 , leading to aromatization.

The 3-hydroxycarbazoles 15 were converted into hyellazole 1, 4-deoxycarbazomycin B 2c, and compound 4, respectively. The carbazole 15c was treated with sodium hydroxide and catalytic tetrabutylammonium hydrogen sulfate in (TBAHS) in

$1 \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}$
2c $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Me}$

Scheme 4 Reagents and conditions: i, heat in cis-decalin; ii, TBAF, THF, $0{ }^{\circ} \mathrm{C}$; iii, $\mathrm{Me}_{2} \mathrm{SO}_{4}, \mathrm{NaOH}, \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{HSO}_{4}{ }^{-}, \mathrm{C}_{6} \mathrm{H}_{6}$; or MeI, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, acetone; iv, $\mathrm{NaOH}, \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{HSO}_{4}{ }^{-}, \mathrm{C}_{6} \mathrm{H}_{6}$.
refluxing benzene to give the 3-hydroxycarbazole 4. Treatment of the carbazole 15a with dimethyl sulfate and sodium hydroxide (to give the methyl ether 16a) followed by deacetylation with sodium hydroxide afforded hyellazole $1(72 \%)$. The spectral data of hyellazole 1 thus obtained were identical with those of natural ${ }^{2}$ and synthetic samples. ${ }^{5}$ 56.8.10
In a similar manner, methylation of 3-hydroxycarbazole 15b with methyl iodide in the presence of potassium carbonate (to give the methyl ether 16b) followed by deacetylation with sodium hydroxide afforded 4-deoxycarbazomycin B 2c, whose spectral data closely match those described in the literature. ${ }^{\text {3.7.8.9 }}$

Experimental

All m.p.s are uncorrected, and were measured on a Yanagimoto micromelting point apparatus. The b.p. was determined with a Buchi GKP-50 apparatus. The UV spectrum for hyellazole 1 was measured on a Hitachi 124 spectrometer. IR spectra were recorded with a Hitachi $270-30$ spectrophotometer. NMR spectra were determined with JEOL PMX-60, JNM-GX 270, or GX-400 spectrometers with tetramethylsilane as internal standard. J Values are given in Hz . Mass spectra were obtained with a JEOL JMS-DX302 instrument with a direct inlet system operating at 70 eV . Elemental analyses were obtained by using a Perkin-Elmer Model 240B elemental analyser. Column chromatography was carried out on silica gel (Kanto Chemical Co. Inc., 100-200 mesh and Merck, 400 mesh). 1-Acetyl-2-methoxy-1,2-dihydroindol-3-one $6{ }^{20}$ and (E)-2-oxo-4-phenyl-but-3-enylidene(triphenyl)phosphorane $10 \mathbf{c}^{16}$ were prepared according to the reported procedure.
(E)-3-Methylpent-3-en-2-one 8.-A solution of methyllithium ($0.7 \mathrm{~mol} \mathrm{dm}{ }^{3} ; 400 \mathrm{~cm}^{3}, 0.28 \mathrm{~mol}$) was added to a solution of tiglic acid $7(14 \mathrm{~g}, 0.14 \mathrm{~mol})$ in dry diethyl ether $\left(320 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 2 h. To the resulting mixture at $0^{\circ} \mathrm{C}$ was gradually added 0.4 mol dm^{-3} hydrochloric acid $\left(560 \mathrm{~cm}^{3}\right)$, and the mixture was extracted with diethyl ether. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was distilled under reduced pressure to give the pentenone $8(10.4 \mathrm{~g}, 75 \%)$ as an oil, b.p. $48^{\circ} \mathrm{C}(50 \mathrm{mmHg})\left(\right.$ lit., $\left.{ }^{21} 138-139{ }^{\circ} \mathrm{C}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1662$ $(\mathrm{C}=\mathrm{O})$ and $1647(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.75(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.85(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}), 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe})$ and $6.72(1 \mathrm{H}, \mathrm{q}, J$ $7,-\mathrm{CH}=$).
(E)-1-Bromo-3-methylpent-3-en-2-one 9b.-To a solution of the pentenone $8(2.95 \mathrm{~g}, 30.1 \mathrm{mmol})$ and 5,5 -dibromo-2,2-dimethyl-4,6-dioxo-1,3-dioxane ($9.15 \mathrm{~g}, 30.1 \mathrm{mmol}$) in carbon tetrachloride $\left(60 \mathrm{~cm}^{3}\right.$) was added 47% hydrobromic acid (10 drops). The mixture was heated under reflux for 5 h . After cooling, the resulting mixture was neutralized with aq. NaHCO_{3} and extracted with chloroform. The extract was dried over MgSO_{4} and concentrated. The residue was chromatographed on silica gel with hexane-chloroform (1:1) as eluent to give the bromide $9 b\left(3.1 \mathrm{~g}, 58 \%\right.$) as an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1667$ $(\mathrm{C}=\mathrm{O})$ and $1645 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.82(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.92(3$ $\mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}), 4.15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right)$ and $6.80(1 \mathrm{H}, \mathrm{q}, J 7$, $-\mathrm{CH}=$).
(E)-3-Methyl-2-oxo-4-phenylbut-3-enylidene(triphenyl)phosphorane 10a.-A solution of (E)-1-chloro-3-methyl-4-phenylbut-3-en-2-one $9 \mathrm{a}^{15}(4.32 \mathrm{~g}, 22.3 \mathrm{mmol})$ and triphenylphosphine ($5.9 \mathrm{~g}, 22.3 \mathrm{mmol}$) in dry tetrahydrofuran (THF) (40 cm^{3}) was heated under reflux for 12 h . After cooling, crystals that had precipitated were collected (7.0 g). The crystals were dissolved in methanol $\left(20 \mathrm{~cm}^{3}\right)$, and 5.5% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (18.5 cm^{3}) was added to the solution. The mixture was stirred at room temperature for 30 min . After removal of the solvent, the residue was extracted with chloroform $\left(100 \mathrm{~cm}^{3}\right)$. The extract was washed with water, dried over MgSO_{4}, and concentrated to give the phosphorane $10 \mathrm{a}\left(5.68 \mathrm{~g}, 61 \%\right.$), m.p. $164-166^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 83.1; H, 5.9. $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{OP}$ requires $\mathrm{C}, 82.84$; $\mathrm{H}, 5.99 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1653$ and $1623 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $7.15-8.0(22 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and $-\mathrm{CH}=) ; \mathrm{m} / \mathrm{z} 420\left(\mathrm{M}^{+}, 15 \%\right), 419(50), 303(100), 275(48)$ and 262 (31).
(E)-3-Methyl-2-oxopent-3-enylidene(triphenyl)phosphorane 10b.-A solution of the bromide 9b $(2.05 \mathrm{~g}, 11.6 \mathrm{mmol})$ and triphenylphosphine ($2.52 \mathrm{~g}, 9.6 \mathrm{mmol}$) in chloroform ($20 \mathrm{~cm}^{3}$) was kept at room temperature. After 46 h , the mixture was concentrated to give a solid, which was washed with diethyl ether and dried to give crystals (3.37 g). To a solution of the crystals in methylene dichloride ($56 \mathrm{~cm}^{3}$) was added 33% aq. $\mathrm{NaOH}\left(7 \mathrm{~cm}^{3}\right.$). The mixture was vigorously stirred at room temperature for 1 h and extracted with methylene dichloride ($100 \mathrm{~cm}^{3}$). The extract was washed with water, dried over MgSO_{4}, and concentrated. The residue was chromatographed on silica gel with ethyl acetate to give the phosphorane 10b (0.94 $\mathrm{g}, 27 \%$), m.p. $129-131.5^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O}$) (Found: C , 80.3; $\mathrm{H}, 6.5$. $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{OP}$ requires $\mathrm{C}, 80.43 ; \mathrm{H}, 6.47 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1652,1449,1443,1402$ and $1109 ; \delta_{\mathrm{H}}(60$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $1.73(3 \mathrm{H}, \mathrm{d}, J 7$, Me), $1.92(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.89(1$ $\mathrm{H}, \mathrm{br},-\mathrm{CH}=), 6.55(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7,-\mathrm{CH}=)$ and $7.15-8.0(15 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; m / z 358\left(\mathrm{M}^{+}, 42 \%\right), 343$ (29), 303 (100), 275 (21), 262 (36) and 183 (27).
(E)-1-(1-Acetyl-2-methoxyindol-3-yl)-3-methyl-4-phenylbut-3-en-2-one 11a.-A solution of 1-acetyl-2-methoxy-1,2-dihydroindol-3-one $6(0.94 \mathrm{~g}, 4.6 \mathrm{mmol})$ and the phosphorane $10 \mathbf{a}(2.9 \mathrm{~g}, 6.9 \mathrm{mmol})$ in dry 1,4 -dioxane ($10 \mathrm{~cm}^{3}$) was heated under reflux for 7.5 h . The solvent was evaporated off and the residue was chromatographed on silica gel with methylene dichloride to give the indole $11 \mathrm{a}\left(1.35 \mathrm{~g}, 85 \%\right.$), m.p. $126-127^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 75.8; H, 6.0; N, 4.0. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $\mathrm{C}, 76.05 ; \mathrm{H}, 6.1 ; \mathrm{N}, 4.0 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1702$ $(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O})$ and $1636(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 2.15 ($3 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{MeC}=$), $2.66(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 4.0(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 4.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right), 7.23(1 \mathrm{H}, \mathrm{dt}, J 1.2$ and 7.3 , ArH), $7.27(1 \mathrm{H}, \mathrm{dt}, J 1.5$ and $7.3, \mathrm{ArH}), 7.3-7.45(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.76$ ($1 \mathrm{H}, \mathrm{d}, J 1.2,=\mathrm{CH}-$) and $8.37(1 \mathrm{H}, \mathrm{dd}, J 1.2$ and 7.3 , ArH); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 13.3,25.6,32.7,63.5,99.5,116.4,117.9$, $123.7,124.4,128.0,128.5,128.7,129.8,131.9,135.7,136.8$,
139.6, 148.9, 169.2 and 198.6; m/z $347\left(\mathrm{M}^{+}, 10 \%\right), 202(25)$, 160 (100), 145 (15) and 117 (11).
(E)-1-(1-Acetyl-2-methoxyindol-3-yl)-3-methylpent-3-en-2one 11 b .-A solution of the indol-3-one $6(0.44 \mathrm{~g}, 2.2 \mathrm{mmol})$ and the phosphorane $10 \mathrm{~b}(1.17 \mathrm{~g}, 3.25 \mathrm{mmol})$ in dry toluene (6 cm^{3}) was refluxed for 5 h . The solvent was evaporated off, and the residue was chromatographed on silica gel with methylene dichloride to give the indole $11 \mathrm{~b}(0.59 \mathrm{~g}, 96 \%)$, m.p. $95-96^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 71.5 ; \mathrm{H}, 4.85 ; \mathrm{N}, 6.75 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires C , $71.55 ; \mathrm{H}, 4.9 ; \mathrm{N}, 6.7 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1700(\mathrm{C}=\mathrm{O}), 1671$ $(\mathrm{C}=\mathrm{O})$ and $1641(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.82(3 \mathrm{H}, \mathrm{d}, J 1.2$, Me), $1.90(3 \mathrm{H}, \mathrm{d}, J 7.1$, Me), 2.64 (3 H, s, COMe), 3.95 ($3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 4.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.98(1 \mathrm{H}, \mathrm{dq}, J 1.2$ and $6.9,-\mathrm{CH}=)$, $7.15-7.3(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.35(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 11.2, 14.9, 25.6, 32.0, 63.4, 99.5, 116.3, 117.9, $123.6,124.3,128.1,131.8,138.0,138.2,148.9,169.2$ and 197.8; $m / z 285\left(\mathrm{M}^{+}, 20 \%\right), 202(18), 160(100), 145(16)$ and $117(12)$.

1-(1-Acetyl-2-methoxyindol-3-yl)-4-phenylbut-3-en-2-one 11c.-A solution of the indol-3-one $6(2.02 \mathrm{~g}, 10 \mathrm{mmol})$ and the phosphorane $10 \mathrm{c}(6.12 \mathrm{~g}, 15 \mathrm{mmol})$ in dry toluene $\left(20 \mathrm{~cm}^{3}\right)$ was heated under reflux for 5.5 h . The mixture was concentrated under reduced pressure, and the residue was chromatographed on silica gel (methylene dichloride) to give a mixture of E and Z isomers (95:5) of the indole $11 \mathrm{c}(2.29 \mathrm{~g}, 69 \%$), m.p. 117$118^{\circ} \mathrm{C}$ (from hexane) (Found: $\mathrm{C}, 75.65 ; \mathrm{H}, 5.7 ; \mathrm{N}, 4.15$. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $\left.\mathrm{C}, 75.65 ; \mathrm{H}, 5.75 ; \mathrm{N}, 4.2 \%\right)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1698(\mathrm{C}=\mathrm{O}), 1632$ and $1613 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.65(3$ $\mathrm{H}, \mathrm{s}, \mathrm{COMe}), 3.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.84(1 \mathrm{H}$, $\mathrm{d}, J 16.2,-\mathrm{CH}=), 7.2-7.6(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.70(1 \mathrm{H}, \mathrm{d}, J 16.2$, $-\mathrm{CH}=$) and $8.37(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH})$. Signals due to Z -isomer of the indole 11c also appeared, at (inter alia) $\delta 2.62(3 \mathrm{H}, \mathrm{s}$, COMe), 3.78 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$), 3.93 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), and 6.29 (d, J $12.9,-\mathrm{CH}=) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 25.8,36.2,63.4,98.2,116.5$, $117.7,123.8,124.5,128.0,128.4,129.0,130.7,131.8,134.2$, $143.7,149.3,169.3$ and $196.4 ; m / z 333\left(\mathrm{M}^{+}, 24 \%\right), 202$ (27), 160 (100) and 145 (20).

1-Acetyl-2-methoxy-3-[(1Z,3E)-3-methyl-4-phenyl-2-(trimethylsiloxy)buta-1,3-dienyl]indole 12a.-A solution of the indole $11 \mathrm{a}(1.0 \mathrm{~g}, 2.3 \mathrm{mmol})$ and $\operatorname{HMDS}(0.7 \mathrm{~g}, 4.35 \mathrm{mmol})$ in dry methylene dichloride $\left(45 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 30 min under argon. After cooling of the solution to $-20^{\circ} \mathrm{C}$, TMSI $(0.64 \mathrm{~g}, 3.2 \mathrm{mmol})$ was added. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 10 min and at room temperature for 2 h . The resulting mixture was concentrated under reduced pressure to give a residue, which was crystallized from ethanol to give the silylenol ether $12 \mathrm{a}(0.96 \mathrm{~g}, 80 \%)$, m.p. $107-109{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 71.3 ; \mathrm{H}, 6.9 ; \mathrm{N}, 3.3 . \mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Si}$ requires $\mathrm{C}, 71.55 ; \mathrm{H}, 7.0 ; \mathrm{N}, 3.3 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1697$ $(\mathrm{C}=\mathrm{O})$ and $1629(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.04(9 \mathrm{H}, \mathrm{s}$, SiMe_{3}), $2.20(3 \mathrm{H}, \mathrm{d}, J 0.9, \mathrm{MeC}=$), $2.68(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}) .4 .06$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $6.1(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}=), 7.09(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}=), 7.25-7.35$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.35-7.5 (4 H, m, ArH), $7.52(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.42(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.2,15.0,26.5,60.9$, $98.8,100.1,116.0,119.0,123.5,123.7,126.7,127.7,128.2,129.3$, $131.4,133.5,137.9,148.0,153.4$ and $169.8 ; m / \mathrm{z} 419\left(\mathrm{M}^{+}, 28 \%\right)$, 388 (22), 362 (23), 346 (48), 272 (25) and 73 (100).

1-Acetyl-2-methoxy-3-[(1Z,3E)-3-methyl-2-(trimethylsiloxy)-penta-1,3-dienyl]indole $\mathbf{1 2 b}$. A solution of the indole 11 b (2.32 $\mathrm{g}, 8.14 \mathrm{mmol})$ and HMDS $(3.04 \mathrm{~g}, 18.9 \mathrm{mmol})$ in dry methylene dichloride ($120 \mathrm{~cm}^{3}$) was kept at room temperature for 30 min under argon, and was then cooled to $-20^{\circ} \mathrm{C}$. TMSI (2.79 g , 13.95 mmol) was added to the solution. The reaction mixture was stirred at the same temperature for 10 min and at room temperature for 2 h . After concentration, the residue was
purified by column chromatography on silica gel with ethyl acetate-hexane ($1: 15$) as eluent to give the silylenol ether 12b ($2.85 \mathrm{~g}, 98 \%$), m.p. $84-85^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 67.2; $\mathrm{H}, 7.75 ; \mathrm{N}, 3.85 . \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Si}$ requires $\mathrm{C}, 67.2 ; \mathrm{H}, 7.6$; $\mathrm{N}, 3.9 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1698(\mathrm{C}=\mathrm{O})$ and $1634(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.13\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.79(3 \mathrm{H}, \mathrm{d}, J 7$, Me), 1.93 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 2.64 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 4.00 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.84(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}=), 6.08(1 \mathrm{H}, \mathrm{q}, J 7.1,-\mathrm{CH}=), 7.2-7.25(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.41(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.34(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.1,13.2,13.9,26.5,60.6,97.5,98.8,115.9,118.9,123.3$, $123.4,123.6,128.8,131.4,132.4,147.7,153.5$ and $169.8 ; m / z 357$ $\left(\mathrm{M}^{+}, 49 \%\right), 300(49), 284(49), 210(44)$ and 73 (100).

1-Acetyl-2-methoxy-3-[(1Z,3E)- and (1E,3E)-4-phenyl-2-(trimethylsiloxy)buta-1,3-dieny]indole 12c.-A solution of the indole $11 \mathrm{c}(0.28 \mathrm{~g}, 0.84 \mathrm{mmol})$ and $\operatorname{HMDS}(0.54 \mathrm{~g}, 1.95 \mathrm{mmol})$ in dry methylene dichloride ($13 \mathrm{~cm}^{3}$) was kept at room temperature for 30 min , and was then cooled to $-20^{\circ} \mathrm{C}$. TMSI $(0.15 \mathrm{~g}, 1.44 \mathrm{mmol})$ was added to the solution. The reaction mixture was stirred at the same temperature for 10 min and at room temperature for 2 h . After concentration, the residue was purified by column chromatography on silica gel with ethyl acetate-hexane ($1: 15$) as eluent to give the silylenol ether 12c ($Z E: Z Z 2: 1 ; 0.32 \mathrm{~g}, 95 \%$) as a yellow oil (Found: M^{+}, 405.1758. $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Si}$ requires $\mathrm{M}, 405.1760$); $v_{\max }\left(\mathrm{CHCl}_{3}\right)$ / $\mathrm{cm}^{-1} 1700(\mathrm{C}=\mathrm{O})$ and $1624(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ -0.16 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}$ of Z-isomer), $0.24\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right.$ of E isomer), 2.50 ($1 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$ of Z-isomer), $2.52(2 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$ of E-isomer), 3.85 ($2 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ of E-isomer), $3.87(1 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ of Z-isomer), 5.69 ($2 / 3 \mathrm{H}, \mathrm{s},-\mathrm{CH}=$ of E-isomer), $5.77(1 / 3 \mathrm{H}, \mathrm{s}$,
 $(2 / 3 \mathrm{H}, \mathrm{d}, J 15.7,-\mathrm{CH}=$ of E-isomer) $6.78(2 / 3 \mathrm{H}, \mathrm{d}, J$ 15.7, $-\mathrm{CH}=$ of E-isomer), $7.0-7.2(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.3-7.35(1 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH})$ and $8.2-8.27(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.2$, $0.4,26.5,61.1,61.3,98.3,98.9,102.2,104.6,115.9,116.1,118.0$, 119.1, 122.9, 123.5, 123.7, 124.0, 126.6, 126.8, 126.9, 127.7, 127.9, 128.1, 128.6, 128.7, 128.8, 128.9, 130.6, 131.4, 136.8, 147.7, 148.1, 151.0, 151.3 and 169.6; m/z $405\left(\mathrm{M}^{+}, 100 \%\right), 390$ (40), 363 (31), 348 (75), 258 (24) and 73 (47).

9-Acetyl-2-methyl-1-phenyl-3-(trimethylsiloxy)-9H-carbazole 14a and 9-Acetyl-2-methyl-1-phenyl-9H-carbazol-3-ol 15a; Thermal Cyclization of the Indole 12a.-A solution of the silylenol ether 12 a ($0.36 \mathrm{~g}, 0.87 \mathrm{mmol}$) in dry cis-decalin (10 cm^{3}) was refluxed for 5.5 h under argon. The reaction mixture was concentrated under reduced pressure, and the residue was chromatographed on silica gel. Elution with chloroformhexane ($1: 1$) gave the siloxycarbazole $14 \mathrm{a}\left(0.18 \mathrm{~g}, 53 \%\right.$), $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1700(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.37(9 \mathrm{H}, \mathrm{s}$, SiMe_{3}), 1.63 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 2.20 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), $7.05-7.5$ (9 H , $\mathrm{m}, \mathrm{ArH})$ and $7.65-8.03(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. Further elution with the same solvent gave the hydroxycarbazole $15 \mathrm{a}(0.04 \mathrm{~g}, 13 \%$), m.p. $218{ }^{\circ} \mathrm{C}$ (from benzene) (Found: $80.0 ; \mathrm{H}, 5.25$; N, 4.5 , $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires C, $80.0 ; \mathrm{H}, 5.4 ; \mathrm{N}, 4.45 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3612,3420(\mathrm{OH})$ and $1700(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.65(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 5.22(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 7.25-$ $7.55(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.84(1 \mathrm{H}, \mathrm{dd}, J 1.0$ and $7.6, \mathrm{ArH})$ and 8.07 ($1 \mathrm{H}, \mathrm{dd}, J 1.0$ and $7.2, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 14.1, 26.4 , $104.8,114.6,119.3,122.7,123.0,125.2,126.6,127.3,127.7$, $129.0,130.4,130.7,132.6,138.7,140.4,151.5$ and $173.0 ; m / z 315$ $\left(\mathrm{M}^{+}, 19 \%\right)$ and 273 (100).

9-Acetyl-2-methyl-1-phenyl-9H-carbazol-3-ol 15a; Desilylation of the Siloxycarbazole 14a.-The siloxycarbazole 14a (0.76 $\mathrm{g}, 1.96 \mathrm{mmol})$ was treated with $\operatorname{TBAF}(0.62 \mathrm{~g}, 2.39 \mathrm{mmol})$ in THF ($35 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ for 10 min . The resulting mixture was extracted with chloroform ($200 \mathrm{~cm}^{3}$), and the extract was dried over MgSO_{4} and concentrated to give the hydroxycarbazole
$15 \mathrm{a}(0.5 \mathrm{~g}, 81 \%)$, whose IR and ${ }^{1} \mathrm{H}$ NMR spectra were identical with those of the sample obtained in the preceding experiment.

9-Acetyl-1,2-dimethyl-9H-carbazol-3-ol 15b.-A solution of the silylenol ether $\mathbf{1 2 b}(0.47 \mathrm{~g}, 1.3 \mathrm{mmol})$ in dry cis-decalin ($24 \mathrm{~cm}^{3}$) was refluxed for 37 h . The reaction mixture was concentrated under reduced pressure, and the residue was treated with a solution of TBAF ($0.35 \mathrm{~g}, 1.32 \mathrm{mmol}$) in THF $\left(10 \mathrm{~cm}^{3}\right)$ at room temperature for 25 min . The solvent was evaporated off and the residue was chromatographed on silica gel with methylene dichloride-hexane ($15: 1$) as eluent to give the carbazole $15 \mathrm{~b}\left(0.13 \mathrm{~g}, 40 \%\right.$), m.p. $165-167^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{M}^{+}, 253.1100 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $M, 253.1103$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3660,3420(\mathrm{OH})$ and $1698(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.59(3 \mathrm{H}, \mathrm{s}$, COMe), $5.15(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 7.26(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.31(1 \mathrm{H}, \mathrm{ddd}, J$ $1.0,7.3$ and $7.5, \mathrm{ArH}$), 7.41 (1 H , ddd, $J 1.3,7.3$ and $8.2, \mathrm{ArH}$), $7.77(1 \mathrm{H}, \mathrm{dd}, J 1.0$ and $7.5, \mathrm{ArH})$ and $8.01(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.5,18.7,26.6,103.1,115.1,119.6,123.4$, 123.7, 126.2, 126.4, 126.8, 126.9, 134.3, 140.7, 151.3 and 171.6; $m / z 253\left(\mathrm{M}^{+}, 36 \%\right), 211$ (100), 196 (11), 180 (11) and 167 (14).

9-Acetyl-1-phenyl-9H-carbazol-3-ol 15c.-A solution of the silylenol ether $12 \mathrm{c}(0.41 \mathrm{~g}, 1 \mathrm{mmol})$ in dry cis-decalin ($10 \mathrm{~cm}^{3}$) was refluxed for 7 h . After removal of solvent, the residue was chromatographed on silica gel with chloroform-hexane ($4: 1$) as eluent to give the silyloxycarbazole 14 c as an oil (0.27 g), $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1700(\mathrm{C}=\mathrm{O})$ and $1618(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.37(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} 3), 1.70(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe})$ and 6.9-8.4 ($11 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
The oil was diluted with THF $\left(12 \mathrm{~cm}^{3}\right)$, and then the solution was treated with TBAF $(0.25 \mathrm{~g}, 0.8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was extracted with methylene dichloride ($100 \mathrm{~cm}^{3}$), and the extract was washed with water, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with methylene dichloride to give the carbazole $15 \mathrm{c}(0.17 \mathrm{~g}, 60 \%$), m.p. $193-196^{\circ} \mathrm{C}$ (from benzene) (Found: C, $79.75 ; \mathrm{H}, 4.8 ; \mathrm{N}$, 4.6. $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 79.7 ; \mathrm{H}, 5.0 ; \mathrm{N}, 4.65 \%$); $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3186(\mathrm{OH}), 1656(\mathrm{C}=\mathrm{O})$ and 1621; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 5.03 ($1 \mathrm{H}, \mathrm{br}, \mathrm{OH}$), $6.99(1 \mathrm{H}, \mathrm{d}, J 2.3$, $\mathrm{ArH}), 7.3-7.6(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.92(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{ArH})$ and 8.23 (1 H, d, J 7.3, ArH); $\delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 26.2, 105.0, 115.3, $117.0,119.7,123.4,125.2,127.7,127.9,128.0,129.6,130.0$, $131.4,140.4,140.9,152.9$ and $172.4 ; m / z 301\left(\mathrm{M}^{+}, 27 \%\right), 259$ (100), 230 (12) and 228 (10).

1-Phenyl-9H-carbazol-3-ol 4.-A mixture of the carbazole 15 c ($15 \mathrm{mg}, 0.05 \mathrm{mmol}$), 33% aq. $\mathrm{NaOH}\left(0.5 \mathrm{~cm}^{3}\right.$), and TBAHS (1 mg) in benzene ($2 \mathrm{~cm}^{3}$) was vigorously stirred under reflux for 1.5 h . The mixture was extracted with ethyl acetate (10 cm^{3}). The extract was washed with water, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was chromatographed on silica gel with hexane-ethyl acetate ($4: 1$) as eluent to give the hydroxycarbazole $4(12.4 \mathrm{mg}, 97 \%)$ as an oil (Found $\mathrm{M}^{+}, 259.0993 . \mathrm{C}_{18} \mathrm{H}_{13}$ NO requires $M, 259.0989$); $v_{\max }{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3622(\mathrm{OH})$ and $3492(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $4.85(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 7.00(1 \mathrm{H}, \mathrm{d}, J 2.6, \mathrm{ArH}), 7.19(1 \mathrm{H}, \mathrm{ddd}, J$ 2.3, 6.0 and $7.9, \mathrm{ArH}$), $7.34-7.4(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.44(1 \mathrm{H}, \mathrm{d}, J$ 7.3, ArH), 7.49 ($1 \mathrm{H}, \mathrm{d}, J 2.6, \mathrm{ArH}), 7.53$ ($2 \mathrm{H}, \mathrm{t}, J 7.3$, ArH), $7.65(2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}), 8.00(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH})$ and 8.12 (1 $\mathrm{H}, \mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 104.9,110.8,114.6,119.1$, $120.5,123.2,124.5,125.7,126.1,127.7,128.3,129.2,132.3$, 138.5, 140.3 and $149.6 ; m / z 259\left(\mathrm{M}^{+}, 100 \%\right), 230(14)$ and 129 (11).

Hyellazole 1.--A mixture of the hydroxycarbazole 15a (0.32
$\mathrm{g}, 1 \mathrm{mmol})$, dimethyl sulfate $(0.15 \mathrm{~g}, 1.2 \mathrm{mmol})$, TBAHS (0.03 $\mathrm{g}, 0.01 \mathrm{mmol})$, and 50% aq. $\mathrm{NaOH}\left(1 \mathrm{~cm}^{3}\right)$ in benzene $\left(10 \mathrm{~cm}^{3}\right)$ was vigorously stirred at room temperature for 10 min . The reaction mixture was extracted with methylene dichloride (200 cm^{3}), and the extract was washed with water, dried over MgSO_{4}, and evaporated under reduced pressure to give the curd product 16a.

The product $16 a$ was diluted with benzene ($10 \mathrm{~cm}^{3}$), and 50% aq. $\mathrm{NaOH}\left(1 \mathrm{~cm}^{3}\right)$ and TBAHS ($0.03 \mathrm{~g}, 0.1 \mathrm{mmol}$) were added to the solution. The mixture was heated under reflux, with vigorous stirring for 1.5 h , and extracted with methylene dichloride ($200 \mathrm{~cm}^{3}$). The extract was washed with water and dried over MgSO_{4}. Work-up of the extract gave a residue, which was chromatographed on silica gel with methylene dichloride-hexane ($1: 1$) as eluent to give hyellazole $1(0.2 \mathrm{~g}$, 72%), m.p. $137-138^{\circ} \mathrm{C}$ (from hexane) (lit., ${ }^{2.5 b .8}$ m.p. ${ }^{133-}$ $134{ }^{\circ} \mathrm{C}$; lit., ${ }^{10}$ m.p. $132-133^{\circ} \mathrm{C}$) (Found: C, 83.7; H, 5.8; N, 4.9. Calc. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 83.6 ; \mathrm{H}, 5.95 ; \mathrm{N}, 4.9 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) /$ $\mathrm{nm} 351\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 5760\right), 339$ (4300), 305 (18 300), 296 (13900), $265(16400), 251$ (20900), 239 (31900), 234 (32 300) and $225(31800) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3490(\mathrm{NH}), 1458,1426$, $1308,1212,1156$ and $1149 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone) 2.1 (3 $\mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.93$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.9-7.55 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.97 (1 $\mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH})$ and $9.28(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 2.21 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.99 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $7.18(1 \mathrm{H}, \mathrm{ddd}, J 1.2,7.0$ and $7.9, \mathrm{ArH}), 7.27(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH}), 7.32(1 \mathrm{H}, \mathrm{dt}, J 1.2$ and 8.0, ArH), $7.4-7.6(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.52(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.61$ (1 H, br s, NH) and $8.03(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; CDCl_{3}) 13.7, 56.2, 100.4, 110.6, 118.9, 119.9, 120.4, 123.7, $123.9,125.1,125.6,127.6,128.9,129.0,129.89,129.93,133.3$, 137.6, 139.5 and $152.8 ; m / z 287\left(\mathbf{M}^{+}, 100\right), 272$ (67), 254 (21), 143 (10) and 120 (12).

9-Acetyl-3-methoxy-1,2-dimethyl-9H-carbazole 16b.-A mixture of the carbazole $\mathbf{1 5 b}(36 \mathrm{mg}, 0.14 \mathrm{mmol})$, methyl iodide (0.3 cm^{3}), and potassium carbonate ($0.3 \mathrm{~g}, 2.18 \mathrm{mmol}$) in acetone (3 cm^{3}) was heated under reflux with vigorous stirring for 6 h . The mixture was diluted with diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$, filtered, and concentrated. The residue was chromatographed on silica gel with ethyl acetate-hexane $(1: 3)$ as eluent to give the methoxycarbazole 16b ($37.5 \mathrm{mg}, 98 \%$), m.p. $104-105^{\circ} \mathrm{C}$ (from hexane-diethyl ether) (lit., ${ }^{8 b}$ oil) (Found: $\mathrm{M}^{+}, 267.1263$. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M, 267.1259$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1697$ $(\mathrm{C}=\mathrm{O})$ and $1600 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.36(3$ $\mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.58(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 3.95(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.28(1 \mathrm{H}, \mathrm{s}$, ArH), 7.32 (1 H , ddd, $J 1.3,7.2$ and $7.6, \mathrm{ArH}$), $7.40(1 \mathrm{H}$, ddd, J 1.3, 7.2 and $7.9, \mathrm{ArH}), 7.87(1 \mathrm{H}, \mathrm{dd}, J 1.3$ and $7.6, \mathrm{ArH})$ and $8.02(1 \mathrm{H}, \mathrm{dd}, J 1.3$ and $7.9, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.5$, $18.6,26.6,56.0,98.6,115.0,119.3,123.3,125.8,126.0,126.1$, $126.6,127.0,134.1,140.5,155.3$ and $171.4 ; m / z 267\left(\mathrm{M}^{+}, 58 \%\right)$, 225 (96), 210 (100), 180 (27) and 167 (15).

3-Methoxy-1,2-dimethyl-9H-carbazole (4-Deoxycarbazomy$\operatorname{cin} B) \mathbf{2 c}$. A mixture of the acetylcarbazole $\mathbf{1 6 b}(19 \mathrm{mg}, 0.07$ mmol), TBAHS (1 mg), 35% aq. $\mathrm{NaOH}\left(0.1 \mathrm{~cm}^{3}\right.$), and benzene $\left(1 \mathrm{~cm}^{3}\right)$ was heated under reflux with vigorous stirring for 1.5 h . The reaction mixture was extracted with ethyl acetate $\left(15 \mathrm{~cm}^{3}\right)$, and the extract was washed with water, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with chloroform to give 4-deoxycarbazomycin B 2c ($13 \mathrm{mg}, 86 \%$), m.p. $137-138^{\circ} \mathrm{C}$ (from hexane-diethyl ether) (lit., ${ }^{3} 129-130^{\circ} \mathrm{C}$; lit., ${ }^{7} 129$ $131^{\circ} \mathrm{C}$; lit., ${ }^{8} 120-121^{\circ} \mathrm{C}$; lit., ${ }^{9} \quad 130-132^{\circ} \mathrm{C}$) (Found: M^{+}, $225.1150 . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}$ requires $\left.M, 225.1154\right)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3498(\mathrm{NH}), 1497,1458,1430,1309,1275,1162,1149,1114$ and $1103 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.44(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.94(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.18$ (1 H , ddd, J 1.3, 6.6 and $7.0, \mathrm{ArH}$),
7.3-7.45 (2 H, m, ArH), 7.38 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.75(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$ and $8.03(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.3,13.9$, $56.3,99.0,110.7,118.9,119.0,119.9,120.1,124.1,124.2,124.9$, $134.1,139.6$ and $152.6 ; m / z 225\left(\mathrm{M}^{+}, 41 \%\right), 210(100), 180(55)$, 167 (66) and 152 (12).

Acknowledgements

We thank Professor S. Hibino of Fukuyama University for the ${ }^{1} \mathrm{H}$ NMR spectra of hyellazole 1 . We are also grateful to Mr. H. Itahana for his technical assistance, and to Mr. N. Eguchi, Mrs. A. Minagawa, and Misses T. Gotoh, M. Narita, and S. Yoshioka in the Analytical Center of our college for measurements of microanalytical, NMR (GX-400), and mass spectral data.

References

1 Preliminary communication; T. Kawasaki, Y. Nonaka and M. Sakamoto, J. Chem. Soc., Chem. Commun., 1989, 43.
2 J. H. Cardellina II, M. P. Kirkup, R. E. Moore, J. S. Mynderse, K. Seff and C. J. Simmons, Tetrahedron Lett., 1979, 4915.
3 K. Sakano, K. Ishimaru and S. Nakamura, J. Antibiot., 1980, 33, 683; K. Sakano and S. Nakamura, J. Antibiot., 1980, 33, 961; M. Kaneda, K. Sakano, S. Nakamura, Y. Kushi and Y. Iitaka, Heterocycles, 1981, 15, 993; S. Kondo, M. Katayama and S. Marumo, J. Antibiot., 1986, 39, 727; T. Naid, T. Kitahara, M. Kaneda and S. Nakamura, J. Antibiot., 1987, 40, 157; M. Kaneda, T. Naid, T. Kitahara, S. Nakamura, T. Hirata and T. Suga, J. Antibiot., 1988, 41, 602; S. Nakamura, Trans. Bose Res. Inst., 1984, 47, 69.
4 S. Kato, H. Kawai, T. Kawasaki, Y. Toda, T. Urata and Y. Hayakawa, J. Antibiot., 1989, 42, 1879.
5 (a) S. Kano, E. Sugino and S. Hibino, J. Chem. Soc., Chem. Commun., 1980, 1241; (b) S. Kano, E. Sugino, S. Shibuya and S. Hibino, J. Org. Chem., 1981, 46, 3856.
6 S. Takano, Y. Suzuki and K. Ogasawara, Heterocycles, 1981, 16, 1479
7 U. Pindur and L. Pfeuffer, Heterocycles, 1987, 26, 325.
8 C. J. Moody and P. Shah, (a) J. Chem. Soc., Perkin Trans. 1, 1989, 376; (b) 1989, 2463.
9 H.-J. Knölker, M. Bauermeister, D. Bläser, R. Boese and J.-B. Pannek, Angew. Chem., Int. Ed. Engl., 1989, 28, 223; H.-J. Knölker and M. Bauermeister, J. Chem. Soc., Chem. Commun., 1989, 1468; Heterocycles, 1991, 32, 2443; H.-J. Knölker, M. Bauermeister and J.-B. Pannek, Tetrahedron, 1993, 49, 841.

10 R. L. Danheiser, R. G. Brisbois, J. J. Kowalczyk and R. F. Miller, J. Am. Chem. Soc., 1990, 112, 3093.

11 J. Bergman, L. Venemalm and A. Gogoll, Tetrahedron, 1990, 46, 6067.

12 P. M. Jackson and C. J. Moody, Synlett., 1990, 521; P. M. Jackson, C. J. Moody and R. J. Mortimer, J. Chem. Soc., Perkin Trans. I, 1991, 2941.
13 J. A. Joul, Adv. Heterocycl. Chem., 1984, 35, 83; D. P. Chakraborty, Fortschr. Chem. Org. Naturst., 1977, 34, 299.
14 T. Kawasaki, Y. Nonaka, H. Ohtsuka, H. Sato and M. Sakamoto, J. Chem. Soc., Perkin Trans. 1, 1990, 1101; T. Kawasaki, Y. Nonaka, M. Uemura and M. Sakamoto, Synthesis, 1991, 701.
15 J. A. Moore, J. Org. Chem., 1955, 20, 1607.
16 R. F. Hudson and P. A. Chopard, J. Org. Chem., 1963, 28, 2446.
17 R. Bloch, Synthesis, 1978, 140.
18 R. D. Miller and D. R. McKean, Synthesis, 1979, 730.
19 E. N. Marvell, Thermal Electrocyclic Reactions, Academic Press, New York, 1980, pp. 260-375; C. M. Hettrick and W. J. Scott, J. Am. Chem. Soc., 1991, 113, 4903; B. K. Carpenter, Tetrahedron, 1978, 34, 1877.
20 C.-S. Chien, T. Suzuki, T. Kawasaki and M. Sakamoto, Chem. Pharm. Bull., 1984, 32, 3945.
21 H. O. House and R. S. Ro, J. Am. Chem. Soc., 1958, 80, 2428.

Paper 3/01520C
Received 16th March 1993
Accepted 7th April 1993

